IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v34y2015i7p523-532.html
   My bibliography  Save this article

Augmented Half‐Life Estimation Based on High‐Frequency Data

Author

Listed:
  • Mao‐Lung Huang
  • Shu‐Yi Liao
  • Kuo‐Chin Lin

Abstract

Half‐life estimation has been widely used to evaluate the speed of mean reversion for various economic and financial variables. However, half‐life estimation for the same variable are often different due to the length of the annual time series data used in alternative studies. To solve this issue, this paper extends the ARMA model and derives the half‐life estimation formula for high‐frequency monthly data. Our results indicate that half‐life estimation using short‐period monthly data is an effective approximation for that using long‐period annual data. Furthermore, by applying high‐frequency data, the required effective sample size can be reduced by at least 40% at the 95% confidence level. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Mao‐Lung Huang & Shu‐Yi Liao & Kuo‐Chin Lin, 2015. "Augmented Half‐Life Estimation Based on High‐Frequency Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 523-532, November.
  • Handle: RePEc:wly:jforec:v:34:y:2015:i:7:p:523-532
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongbin Hu & Yongbin Wang, 2022. "Research on Convergence Media Consensus Mechanism Based on Blockchain," Sustainability, MDPI, vol. 14(17), pages 1-27, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:34:y:2015:i:7:p:523-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.