IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v34y2015i6p478-491.html
   My bibliography  Save this article

Forecasting Core Business Transformation Risk Using the Optimal Rough Set and the Neural Network

Author

Listed:
  • Delu Wang
  • Xuefeng Song
  • Wenying Yin
  • Jingying Yuan

Abstract

In the process of enterprise growth, core business transformation is an eternal theme. Enterprise risk forecasting is always an important concern for stakeholders. Considering the completeness and accuracy of the information in the early‐warning index, this paper presents a new risk‐forecasting method for enterprises to use for core business transformation by using rough set theory and an artificial neural network. First, continuous attribute values are discretized using the fuzzy clustering algorithm based on the maximum discernibility value function and information entropy. Afterwards, the major attributes are reduced by the rough sets. The core business transformation risk rank judgement is extracted to define the connection between network nodes and determine the structure of the neural networks. Finally, the improved back‐propagation (BP) neural network learning and training are used to judge the risk level of the test samples. The experiments are based on 265 listed companies in China, and the results show that the proposed risk‐forecasting model based on rough sets and the neural network provides higher prediction accuracy rates than do other widely developed baselines including logistic regression, neural networks and association rules mining. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Delu Wang & Xuefeng Song & Wenying Yin & Jingying Yuan, 2015. "Forecasting Core Business Transformation Risk Using the Optimal Rough Set and the Neural Network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 478-491, September.
  • Handle: RePEc:wly:jforec:v:34:y:2015:i:6:p:478-491
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Delu & Tong, Xian & Wang, Yadong, 2020. "An early risk warning system for Outward Foreign Direct Investment in Mineral Resource-based enterprises using multi-classifiers fusion," Resources Policy, Elsevier, vol. 66(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:34:y:2015:i:6:p:478-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.