IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v33y2014i2p108-123.html
   My bibliography  Save this article

Forecasting Forward Defaults with the Discrete‐Time Hazard Model

Author

Listed:
  • Ruey‐Ching Hwang
  • Chih‐Kang Chu

Abstract

ABSTRACT For predicting forward default probabilities of firms, the discrete‐time forward hazard model (DFHM) is proposed. We derive maximum likelihood estimates for the parameters in DFHM. To improve its predictive power in practice, we also consider an extension of DFHM by replacing its constant coefficients of firm‐specific predictors with smooth functions of macroeconomic variables. The resulting model is called the discrete‐time varying‐coefficient forward hazard model (DVFHM). Through local maximum likelihood analysis, DVFHM is shown to be a reliable and flexible model for forward default prediction. We use real panel datasets to illustrate these two models. Using an expanding rolling window approach, our empirical results confirm that DVFHM has better and more robust out‐of‐sample performance on forward default prediction than DFHM, in the sense of yielding more accurate predicted numbers of defaults and predicted survival times. Thus DVFHM is a useful alternative for studying forward default losses in portfolios. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Ruey‐Ching Hwang & Chih‐Kang Chu, 2014. "Forecasting Forward Defaults with the Discrete‐Time Hazard Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 108-123, March.
  • Handle: RePEc:wly:jforec:v:33:y:2014:i:2:p:108-123
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    2. Dendramis, Y. & Tzavalis, E. & Adraktas, G., 2018. "Credit risk modelling under recessionary and financially distressed conditions," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 160-175.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:33:y:2014:i:2:p:108-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.