IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v29y2014i4p523-548.html
   My bibliography  Save this article

Estimation Of Censored Panel‐Data Models With Slope Heterogeneity

Author

Listed:
  • Jason Abrevaya
  • Shu Shen

Abstract

SUMMARY This paper considers estimation of censored panel‐data models with individual‐specific slope heterogeneity. The slope heterogeneity may be random (random slopes model) or related to covariates (correlated random slopes model). Maximum likelihood and censored least‐absolute deviations estimators are proposed for both models. The estimators are simple to implement and, in the case of maximum likelihood, lead to straightforward estimation of partial effects. The rescaled bootstrap suggested by Andrews (Econometrica 2000; 68 : 399–405) is used to deal with the possibility of variance parameters being equal to zero. The methodology is applied to an empirical study of Dutch household portfolio choice, where the outcome variable (portfolio share in safe assets) has corner solutions at zero and one. As predicted by economic theory, there is strong evidence of correlated random slopes for the age profiles, indicating a heterogeneous age profile of portfolio adjustment that varies significantly with other household characteristics. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Jason Abrevaya & Shu Shen, 2014. "Estimation Of Censored Panel‐Data Models With Slope Heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 523-548, June.
  • Handle: RePEc:wly:japmet:v:29:y:2014:i:4:p:523-548
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayala, Diana & Nedeljkovic, Milan & Saborowski, Christian, 2017. "What slice of the pie? The corporate bond market boom in emerging economies," Journal of Financial Stability, Elsevier, vol. 30(C), pages 16-35.
    2. Yang, Chao & Lee, Lung-fei & Qu, Xi, 2018. "Tobit models with social interactions: Complete vs incomplete information," Regional Science and Urban Economics, Elsevier, vol. 73(C), pages 30-50.
    3. Daniel Buncic, 2019. "Identification and Estimation Issues in Exponential Smooth Transition Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(3), pages 667-685, June.
    4. repec:zbw:bofitp:2016_008 is not listed on IDEAS
    5. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    6. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    7. Ayala, Diana & Nedeljkovic, Milan & Saborowski, Christian, 2016. "What slice of the pie? The corporate bond market boom in emerging economies," BOFIT Discussion Papers 8/2016, Bank of Finland Institute for Emerging Economies (BOFIT).
    8. Muhammad Basir Paly, 2019. "Calving Interval of Productive PC to Increase Cattle Population Growth: A Case Study At South Sulawesi, Indonesia," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(5), pages 1325-1333.
    9. Welsch, David M. & Zimmer, David M., 2016. "The dynamic relationship between school size and academic performance: An investigation of elementary schools in Wisconsin," Research in Economics, Elsevier, vol. 70(1), pages 158-169.
    10. Jiahang He & Toshiyuki Yamamoto & Tomio Miwa & Takayuki Morikawa, 2020. "Hazard Duration Model with Panel Data for Daily Car Travel Distance: A Toyota City Case Study," Sustainability, MDPI, vol. 12(16), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:29:y:2014:i:4:p:523-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.