IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v7y1998i1p43-52.html
   My bibliography  Save this article

Real option valuation with neural networks

Author

Listed:
  • Alfred Taudes
  • Martin Natter
  • Michael Trcka

Abstract

We propose to use neural networks to value options when analytical solutions do not exist. The basic idea of this approach is to approximate the value function of a dynamic program by a neural net, where the selection of the network weights is done via simulated annealing. The main benefits of this method as compared to traditional approximation techniques are that there are no restrictions on the type of the underlying stochastic process and no limitations on the set of possible actions. This makes our approach especially attractive for valuing Real Options in flexible investments. We, therefore, demonstrate the method proposed by valuing flexibility for costly switch production between several products under various conditions. © 1998 John Wiley & Sons, Ltd.

Suggested Citation

  • Alfred Taudes & Martin Natter & Michael Trcka, 1998. "Real option valuation with neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 7(1), pages 43-52, March.
  • Handle: RePEc:wly:isacfm:v:7:y:1998:i:1:p:43-52
    DOI: 10.1002/(SICI)1099-1174(199803)7:13.0.CO;2-D
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1174(199803)7:13.0.CO;2-D
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1174(199803)7:13.0.CO;2-D?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
    2. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.
    3. Daniel E. O'Leary, 2009. "Downloads and citations in Intelligent Systems in Accounting, Finance and Management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 21-31, January.
    4. Giovanni Villani, 2022. "A Neural Network Approach to Value R&D Compound American Exchange Option," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 305-324, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:7:y:1998:i:1:p:43-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.