IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v6y1997i1p59-72.html
   My bibliography  Save this article

Predicting Bond Ratings Using Neural Networks: A Comparison with Logistic Regression

Author

Listed:
  • JOHN J. MAHER
  • TARUN K. SEN

Abstract

Bond rating agencies examine the financial outlook of a company and the characteristics of a bond issue and assign a rating that indicates an independent assessment of the degree of default risk associated with the firm’s bonds. Predicting this bond rating has been of interest to potential investors as well as to the firm. Prior research in this area has primarily relied upon traditional statistical methods to develop models with reasonably good prediction accuracy. This article utilizes a neural network approach to modeling the bond rating process in an attempt to increase the overall prediction accuracy of the models. A comparison is made to a more traditional logistic regression approach to classification prediction. The results indicate that the neural networks‐based model performs significantly better than the logistic regression model for classifying a holdout sample of newly issued bonds in the 1990–92 period. A potential drawback to a neural network approach is a tendency to overfit the data which could negatively affect the model’s generalizability. This study carefully controls for overfitting and obtains significant improvement in bond rating prediction compared to the logistic regression approach. © 1997 by John Wiley & Sons, Ltd.

Suggested Citation

  • John J. Maher & Tarun K. Sen, 1997. "Predicting Bond Ratings Using Neural Networks: A Comparison with Logistic Regression," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 6(1), pages 59-72, March.
  • Handle: RePEc:wly:isacfm:v:6:y:1997:i:1:p:59-72
    DOI: 10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-H
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-H
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1174(199703)6:13.0.CO;2-H?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
    2. Daniel E. O'Leary, 2010. "Intelligent Systems in Accounting, Finance and Management: ISI journal and proceeding citations, and research issues from most‐cited papers," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 17(1), pages 41-58, January.
    3. Daniel E. O'Leary, 2009. "Downloads and citations in Intelligent Systems in Accounting, Finance and Management," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 21-31, January.
    4. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:6:y:1997:i:1:p:59-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.