Author
Abstract
Many smart gadgets are connecting to the Internet, and Internet‐of‐Things (IoT) technologies are enabling a variety of applications. Artificial intelligence (AI) of Things (AIoT) devices are anticipated to possess human‐like decision‐making, reasoning, perception, and other capacities with the combination of AI and IoT. AIoT gadgets are expected to be extensively utilized across several domains, as anticipated by 6G networks. With AI's steady advancements in speech recognition, computer vision, and natural language processing—not to mention its ability to analyze large amounts of data—semantic communication is now feasible. A new paradigm in wireless communication is opened by semantic communication, which seeks to explore the meaning behind the bits and only transmits the information that may be used, as opposed to attaining error‐free transmission. The combination of IoT with AI provides prominent features to overcome various important issues in cloud computing networks. However, there is bottleneck of delay and precision. Therefore, this paper proposed a new method to overcome this problem. First, the network slicing feature maps were extracted by convolutional neural networks. Next, the processing delay is reduced by semantic compression. Simulation results show that the proposed approach makes 99.2% reduction in communication complexity and an 80% reduction in transmission delay as compared with traditional methods. Taking the Resnet18 network as an example, the running time of the semantic communication method is only 0.8% of the traditional method.
Suggested Citation
Yunxiang Qi, 2025.
"Computationally Efficient Approach for 6G‐AI‐IoT Network Slicing and Error‐Free Transmission,"
International Journal of Network Management, John Wiley & Sons, vol. 35(2), March.
Handle:
RePEc:wly:intnem:v:35:y:2025:i:2:n:e70007
DOI: 10.1002/nem.70007
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:35:y:2025:i:2:n:e70007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.