Author
Listed:
- Babar Ali
- Muhammed Golec
- Sukhpal Singh Gill
- Felix Cuadrado
- Steve Uhlig
Abstract
Deep neural network (DNN) and machine learning (ML) models/ inferences produce highly accurate results demanding enormous computational resources. The limited capacity of end‐user smart gadgets drives companies to exploit computational resources in an edge‐to‐cloud continuum and host applications at user‐facing locations with users requiring fast responses. Kubernetes hosted inferences with poor resource request estimation results in service level agreement (SLA) violation in terms of latency and below par performance with higher end‐to‐end (E2E) delays. Lifetime static resource provisioning either hurts user experience for under‐resource provisioning or incurs cost with over‐provisioning. Dynamic scaling offers to remedy delay by upscaling leading to additional cost whereas a simple migration to another location offering latency in SLA bounds can reduce delay and minimize cost. To address this cost and delay challenges for ML inferences in the inherent heterogeneous, resource‐constrained, and distributed edge environment, we propose ProKube, which is a proactive container scaling and migration orchestrator to dynamically adjust the resources and container locations with a fair balance between cost and delay. ProKube is developed in conjunction with Google Kubernetes Engine (GKE) enabling cross‐cluster migration and/ or dynamic scaling. It further supports the regular addition of freshly collected logs into scheduling decisions to handle unpredictable network behavior. Experiments conducted in heterogeneous edge settings show the efficacy of ProKube to its counterparts cost greedy (CG), latency greedy (LG), and GeKube (GK). ProKube offers 68%, 7%, and 64% SLA violation reduction to CG, LG, and GK, respectively, and it improves cost by 4.77 cores to LG and offers more cost of 3.94 to CG and GK.
Suggested Citation
Babar Ali & Muhammed Golec & Sukhpal Singh Gill & Felix Cuadrado & Steve Uhlig, 2025.
"ProKube: Proactive Kubernetes Orchestrator for Inference in Heterogeneous Edge Computing,"
International Journal of Network Management, John Wiley & Sons, vol. 35(1), January.
Handle:
RePEc:wly:intnem:v:35:y:2025:i:1:n:e2298
DOI: 10.1002/nem.2298
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:35:y:2025:i:1:n:e2298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.