Author
Listed:
- Omar A. Alzubi
- Jafar A. Alzubi
- Issa Qiqieh
- Ala' M. Al‐Zoubi
Abstract
The Internet of Things has emerged as a significant and influential technology in modern times. IoT presents solutions to reduce the need for human intervention and emphasizes task automation. According to a Cisco report, there were over 14.7 billion IoT devices in 2023. However, as the number of devices and users utilizing this technology grows, so does the potential for security breaches and intrusions. For instance, insecure IoT devices, such as smart home appliances or industrial sensors, can be vulnerable to hacking attempts. Hackers might exploit these vulnerabilities to gain unauthorized access to sensitive data or even control the devices remotely. To address and prevent this issue, this work proposes integrating intrusion detection systems (IDSs) with an artificial neural network (ANN) and a salp swarm algorithm (SSA) to enhance intrusion detection in an IoT environment. The SSA functions as an optimization algorithm that selects optimal networks for the multilayer perceptron (MLP). The proposed approach has been evaluated using three novel benchmarks: Edge‐IIoTset, WUSTL‐IIOT‐2021, and IoTID20. Additionally, various experiments have been conducted to assess the effectiveness of the proposed approach. Additionally, a comparison is made between the proposed approach and several approaches from the literature, particularly SVM combined with various metaheuristic algorithms. Then, identify the most crucial features for each dataset to improve detection performance. The SSA‐MLP outperforms the other algorithms with 88.241%, 93.610%, and 97.698% for Edge‐IIoTset, IoTID20, and WUSTL, respectively.
Suggested Citation
Omar A. Alzubi & Jafar A. Alzubi & Issa Qiqieh & Ala' M. Al‐Zoubi, 2025.
"An IoT Intrusion Detection Approach Based on Salp Swarm and Artificial Neural Network,"
International Journal of Network Management, John Wiley & Sons, vol. 35(1), January.
Handle:
RePEc:wly:intnem:v:35:y:2025:i:1:n:e2296
DOI: 10.1002/nem.2296
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:35:y:2025:i:1:n:e2296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.