Author
Listed:
- Ali Abbasi Tadi
- Mohammad Reza Khayyambashi
- Hadi Khosravi‐Farsani
Abstract
With the daily increase in the number of cloud users and the volume of submitted workloads, load balancing (LB) over clouds followed by a reduction in users' response time is emerging as a vital issue. To successfully address the LB problem, we have optimized workload distribution among virtual machines (VMs). This approach consists of two parts: Firstly, a meta‐heuristic method based on biogeographical optimization for workload dispatching among VMs is introduced; secondly, we propose an innovative heuristic algorithm inspired by the “Banker algorithm” that runs in core scheduler to control and avoid VM overloads. The combination of these two (meta‐)heuristic algorithms constitutes an LB approach through which we have been able to reduce the value of the makespan to a reasonable time frame. Moreover, an information base repository (IBR) is introduced to maintain the online processing status of physical machines (PMs) and VMs. In our approach, data stored in IBR are retrieved when needed. This approach is compared with well‐known (non‐)evolutionary approaches, such as round‐robin, max‐min, MGGS, and TBSLB‐PSO. Experimental results reveal that our proposed approach outperforms its counterparts in a heterogeneous environment when the resources are smaller than the workloads. Moreover, the utilization of physical resources gradually increases. Therefore, optimal workload scheduling, as well as the lack of overload occurrence, results in a reduction in makespan.
Suggested Citation
Ali Abbasi Tadi & Mohammad Reza Khayyambashi & Hadi Khosravi‐Farsani, 2020.
"OASM: An overload‐aware workload scheduling method for cloud computing based on biogeographical optimization,"
International Journal of Network Management, John Wiley & Sons, vol. 30(4), July.
Handle:
RePEc:wly:intnem:v:30:y:2020:i:4:n:e2105
DOI: 10.1002/nem.2105
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:30:y:2020:i:4:n:e2105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.