Author
Listed:
- Davit Harutyunyan
- Roberto Riggio
- Slawomir Kuklinski
- Toufik Ahmed
Abstract
Mobile network operators are currently facing a tremendous increase in the level of data traffic. Although cell size reduction is one of the most common ways used to accommodate such traffic demand, densely deployed small cells also dramatically increase the level of intercell interference. By centralizing baseband signal processing at powerful computing infrastructures, called centralized unit (CU) pools, cloud radio access network (C‐RAN) enables advanced coordination algorithms to be employed in dense small cell networks. In C‐RAN, due to stringent bandwidth and latency requirements at the fronthaul links, the optical fiber, thanks to its bandwidth and latency characteristics, continues to be the most prevalent fronthaul medium option. Nevertheless, the optical fiber is one of the fronthaul options, while C‐RAN (physical layer radio frequency [PHY‐RF] split) is one of the functional splits that can be defined each coming with different fronthaul requirements. In this paper, we formulate and solve a dynamic CU placement problem for mobile networks as an integer linear programming (ILP) problem. In the considered network, CU pools are placed at the edges of the network, and a reconfigurable millimeter wave (MMW) wireless fronthaul links are used in order to provide decentralized units (DUs) with connectivity. We study the impact of different functional splits on the placement cost and on the acceptance ratio using different substrate networks. Lastly, we propose and evaluate a CU placement heuristic algorithm using a numerical simulator. The results reveal that the optimal functional split selection can lead to significant resource utilization benefits in the RAN.
Suggested Citation
Davit Harutyunyan & Roberto Riggio & Slawomir Kuklinski & Toufik Ahmed, 2020.
"CU placement over a reconfigurable wireless fronthaul in 5G networks with functional splits,"
International Journal of Network Management, John Wiley & Sons, vol. 30(1), January.
Handle:
RePEc:wly:intnem:v:30:y:2020:i:1:n:e2086
DOI: 10.1002/nem.2086
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:30:y:2020:i:1:n:e2086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.