IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v28y2023i1p718-732.html
   My bibliography  Save this article

Should stock returns predictability be ‘hooked on’ long‐horizon regressions?

Author

Listed:
  • Theologos Dergiades
  • Panos K. Pouliasis

Abstract

This paper re‐examines stock returns predictability over the business cycle using price‐dividend and price‐earnings valuation ratios as predictors. Unlike prior studies that habitually implement long‐horizon/predictive regressions, we conduct a testing framework in the frequency domain. Predictive regressions support no predictability; in contrast, our results in the frequency domain verify significant predictability at medium and long horizons. To robustify predictability patterns, the analysis is executed repetitively for fixed‐length rolling samples of various sizes. Overall, the stock returns are predictable for wavelengths higher than 5 years. This finding is robust and independent of time, window size and predictor.

Suggested Citation

  • Theologos Dergiades & Panos K. Pouliasis, 2023. "Should stock returns predictability be ‘hooked on’ long‐horizon regressions?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 718-732, January.
  • Handle: RePEc:wly:ijfiec:v:28:y:2023:i:1:p:718-732
    DOI: 10.1002/ijfe.2446
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2446
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Jeremy Berkowitz & Lorenzo Giorgianni, 2001. "Long-Horizon Exchange Rate Predictability?," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 81-91, February.
    4. Radhakrishnan Gopalan & Sudarshan Jayaraman, 2012. "Private Control Benefits and Earnings Management: Evidence from Insider Controlled Firms," Journal of Accounting Research, Wiley Blackwell, vol. 50(1), pages 117-157, March.
    5. Kilian, Lutz & Taylor, Mark P., 2003. "Why is it so difficult to beat the random walk forecast of exchange rates?," Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
    6. John Y. Campbell & Robert J. Shiller, 1988. "Stock Prices, Earnings and Expected Dividends," Cowles Foundation Discussion Papers 858, Cowles Foundation for Research in Economics, Yale University.
    7. Davidson, James & Monticini, Andrea, 2010. "Tests for cointegration with structural breaks based on subsamples," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2498-2511, November.
    8. Campbell, John Y & Hamao, Yasushi, 1992. "Predictable Stock Returns in the United States and Japan: A Study of Long-Term Capital Market Integration," Journal of Finance, American Finance Association, vol. 47(1), pages 43-69, March.
    9. Sarno,Lucio & Taylor,Mark P., 2003. "The Economics of Exchange Rates," Cambridge Books, Cambridge University Press, number 9780521485845, January.
    10. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2015. "Does data frequency matter for the impact of forward premium on spot exchange rate?," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 45-53.
    11. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    12. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    13. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    14. Ravi Bansal & George Tauchen & Hao Zhou, 2004. "Regime Shifts, Risk Premiums in the Term Structure, and the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 396-409, October.
    15. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    16. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    17. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    18. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    19. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    20. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    21. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    22. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    23. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    24. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    25. Mark E. Wohar & David E. Rapach, 2005. "Valuation ratios and long-horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344.
    26. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    27. Lemmens, Aurélie & Croux, Christophe & Dekimpe, Marnik G., 2008. "Measuring and testing Granger causality over the spectrum: An application to European production expectation surveys," International Journal of Forecasting, Elsevier, vol. 24(3), pages 414-431.
    28. Boucher, Christophe, 2007. "Asymmetric adjustment of stock prices to their fundamental value and the predictability of US stock returns," Economics Letters, Elsevier, vol. 95(3), pages 339-347, June.
    29. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    30. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    31. Dergiades, Theologos & Milas, Costas & Panagiotidis, Theodore, 2020. "A mixed frequency approach for stock returns and valuation ratios," Economics Letters, Elsevier, vol. 187(C).
    32. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    33. Sizova, Natalia, 2014. "A frequency-domain alternative to long-horizon regressions with application to return predictability," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 261-272.
    34. Breitung, Jörg & Schreiber, Sven, 2018. "Assessing causality and delay within a frequency band," Econometrics and Statistics, Elsevier, vol. 6(C), pages 57-73.
    35. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    36. Yin, Anwen, 2019. "Out-of-sample equity premium prediction in the presence of structural breaks," International Review of Financial Analysis, Elsevier, vol. 65(C).
    37. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    38. Wen, Yi-Chieh & Lin, Philip T. & Li, Bin & Roca, Eduardo, 2015. "Stock return predictability in South Africa: The role of major developed markets," Finance Research Letters, Elsevier, vol. 15(C), pages 257-265.
    39. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
    40. Christophe Boucher, 2007. "Asymmetric adjustment of stock prices to their fundamental value and the predictability of US stock returns," Post-Print hal-00267994, HAL.
    41. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    42. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    2. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    3. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    4. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Kostakis, Alexandros & Magdalinos, Tassos & Stamatogiannis, Michalis P., 2023. "Taking stock of long-horizon predictability tests: Are factor returns predictable?," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    7. Adrian Austin & Swarna Dutt, 2015. "Exchange Rates and Fundamentals: A New Look at the Evidence on Long-Horizon Predictability," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 147-159, March.
    8. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    9. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    10. Favero, Carlo A. & Gozluklu, Arie E. & Tamoni, Andrea, 2011. "Demographic Trends, the Dividend-Price Ratio, and the Predictability of Long-Run Stock Market Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(5), pages 1493-1520, October.
    11. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    12. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    13. repec:grz:wpaper:2012-02 is not listed on IDEAS
    14. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    15. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    16. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
    17. Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    18. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    19. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    20. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    21. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:28:y:2023:i:1:p:718-732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.