IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i6p1266-1275.html
   My bibliography  Save this article

New insights on supercritical CO2 fracturing coal mass: a staged analysis method

Author

Listed:
  • Hao Yan
  • Jixiong Zhang
  • Meng Li
  • Yu Suo
  • Hengfeng Liu

Abstract

As a water‐less fracturing mining technology, supercritical CO2 fracturing has attracted increasing attention in the mining industry. Based on detailed analysis of CO2 phase behavior in the whole process of supercritical CO2 fracturing, the whole cycle of supercritical CO2 fracturing was divided into the supercritical CO2 fracturing stage and the CO2 phase transition–induced fracturing stage, and according to the characteristics of each fracturing stage, the fracturing mechanism of supercritical CO2 was analyzed in stages, and the roles of the two stages in the life cycle of the entire supercritical CO2 fracturing process were obtained. Through the laboratory test of supercritical CO2 fracturing coal mass, the pressure–time curves during the whole process of supercritical CO2 fluid fracturing were analyzed, and the rationality and correctness of the supercritical CO2 fracturing staged analysis method proposed in this paper were verified. Based on the energy conservation theory and the state function equation of classical thermodynamics, the burst energy of the CO2 phase transition–induced fracturing stage was estimated. By comparing the trinitrotoluene equivalent of phase‐transition energy with the trinitrotoluene amount of explosive explosion, it was proved that the CO2 phase transition–induced fracturing stage was not negligible. The research results of this paper are of considerable significance for the full understanding of the supercritical CO2 fracturing mechanism. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Hao Yan & Jixiong Zhang & Meng Li & Yu Suo & Hengfeng Liu, 2019. "New insights on supercritical CO2 fracturing coal mass: a staged analysis method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(6), pages 1266-1275, December.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:6:p:1266-1275
    DOI: 10.1002/ghg.1926
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1926
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yunzhuo & Ji, Huaijun & Li, Guichuan & Hu, Shaobin & Liu, Xu, 2023. "Effect of supercritical CO2 transient high-pressure fracturing on bituminous coal microstructure," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:6:p:1266-1275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.