IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i6p1247-1265.html
   My bibliography  Save this article

Natural fractures within Knox reservoirs in the Appalachian Basin: characterization and impact on poroelastic response of injection

Author

Listed:
  • Samin Raziperchikolaee
  • Ola Babarinde
  • Joel Sminchak
  • Neeraj Gupta

Abstract

Understanding the distribution and orientation of natural fractures within Knox Groups is of significance in seeking potential CO2 storage zones with high practical storage capacity. Over 700 observations of natural fractures were interpreted on acquired resistivity and acoustic image logs collected at multiple well locations ranging in depth from 730 to 3900 m in the Knox Group interval on the western flank of Appalachian Basin. We evaluated the structural parameters of the fractures using statistical analysis. Natural fracture intensity was observed to increase up‐dip within the studied area. The present day maximum horizontal stress direction was derived using the interpretation of wellbore breakouts and drilling‐induced tensile fractures in image logs. Overall, a high percentage of fractures with varying dip directions were observed to strike subparallel to the contemporary maximum horizontal stress direction. Multiphase flow–geomechanics coupled numerical simulations and poromechanics analytical solutions were then used to study pressure and stress response of CO2 injection into the fractured Knox reservoirs. In addition, we applied a dual permeability model combined with a fracture activation model to study the permeability enhancement and its effect on injection mass increase. We also showed the line source injection solution can reasonably predict stress changes of CO2 injection into the deep saline formations. Results were analyzed to understand the potential effect of natural fractures in sandstone formations and fractured layers in thick carbonate formations on CO2‐injected mass, time‐dependent stress evolution, and the ratio of stress to pore pressure changes. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Samin Raziperchikolaee & Ola Babarinde & Joel Sminchak & Neeraj Gupta, 2019. "Natural fractures within Knox reservoirs in the Appalachian Basin: characterization and impact on poroelastic response of injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(6), pages 1247-1265, December.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:6:p:1247-1265
    DOI: 10.1002/ghg.1933
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1933
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samin Raziperchikolaee & Vivek Singh & Mark Kelley, 2020. "The effect of Biot coefficient and elastic moduli stress–pore pressure dependency on poroelastic response to fluid injection: laboratory experiments and geomechanical modeling," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 980-998, October.
    2. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    3. Samin Raziperchikolaee & Vivek Singh & Mark Kelley, 2022. "Quantifying the impact of effective stress on changes in elastic wave velocities due to CO2 injection into a depleted carbonate reef," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 35-47, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:6:p:1247-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.