IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v9y2019i2p349-359.html
   My bibliography  Save this article

Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi‐solvent blends

Author

Listed:
  • Ji Liu
  • Xiaoshan Li
  • Zewu Zhang
  • Liwei Li
  • Yajun Bi
  • Liqi Zhang

Abstract

The carbon dioxide post‐combustion capture process using amine solutions is considered the most appropriate method for CO2 capture from flue gas in power plants. This paper focuses on the CO2 capture performance of six common organic amines. Two amines, piperazine (PZ) and diethylenetriamine (DETA), which showed better performance, were then filtered out to form amine blends to improve performance further. The absorption heat from the CO2 absorbing process was measured directly using an advanced C80 micro calorimeter for more accurate calculation of regenerative energy consumption. Experimental results confirmed the optimal amine blend to be 10% PZ plus 20% DETA, with a 42% increase in absorption capacity and a 9% increase in initial absorption rate compared to traditional 30% monoethanolamine (MEA). The regeneration energy consumption of this chosen PZ‐DETA blend was calculated to be 3.979 GJ/ton CO2, a decrease of 9% compared with MEA. Moreover, it led to an improvement of about 55% in stable cyclic absorption capacity in comparison with 30% MEA. It was confirmed that this PZ‐DETA blend can bring practical economic benefits to industrial applications when replacing the current 30% MEA solution. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Ji Liu & Xiaoshan Li & Zewu Zhang & Liwei Li & Yajun Bi & Liqi Zhang, 2019. "Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi‐solvent blends," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 349-359, April.
  • Handle: RePEc:wly:greenh:v:9:y:2019:i:2:p:349-359
    DOI: 10.1002/ghg.1851
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1851
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    2. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    3. Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:9:y:2019:i:2:p:349-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.