IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i6p1065-1079.html
   My bibliography  Save this article

Epoxy resin†cement paste composite for wellbores: Evaluation of chemical degradation fostered carbon dioxide

Author

Listed:
  • Alessandra F. Baldissera
  • Marta K. Schütz
  • Leonardo M. dos Santos
  • Felipe Dalla Vecchia
  • Marcus Seferin
  • Rosane Ligabue
  • Eleani M. Costa
  • Vitaly V. Chaban
  • Sonia C. Menezes
  • Sandra Einloft

Abstract

Excessive carbon dioxide (CO2) environmental emission can be partially solved using carbon geological storage technologies. Up†to†date materials in CO2 injection wells are strongly susceptible to acidic attacks causing their irreversible damage over a long time scale. This study investigates degradation by CO2 of epoxy resin†cement paste composites at elevated pressure (50 bar) and temperature (70°C) to mimic wellbore conditions. The effect of epoxy resins on cement carbonation was evaluated by phenolphthalein test, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and numerical simulations. According to electronic†structure†based molecular dynamics simulations, the epoxy resin forms a separate phase that blocks potential reaction sites between the cement and CO2. Thanks to CO2†phobic behavior, the resin repels CO2 and minimizes cement damage due to degradation process. The optimal content of epoxy resin in the cement paste was up to 30% w/w. The reported results provide clear guidelines for further evolution of reinforced cements for use in CO2 injection wellbores. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Alessandra F. Baldissera & Marta K. Schütz & Leonardo M. dos Santos & Felipe Dalla Vecchia & Marcus Seferin & Rosane Ligabue & Eleani M. Costa & Vitaly V. Chaban & Sonia C. Menezes & Sandra Einloft, 2017. "Epoxy resin†cement paste composite for wellbores: Evaluation of chemical degradation fostered carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1065-1079, December.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:6:p:1065-1079
    DOI: 10.1002/ghg.1700
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1700
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura J. Wasch & Jens Wollenweber & Tim J. Tambach, 2013. "Intentional salt clogging: a novel concept for long‐term CO 2 sealing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(6), pages 491-502, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yen Adams Sokama‐Neuyam & Jann Rune Ursin, 2018. "The coupled effect of salt precipitation and fines mobilization on CO2 injectivity in sandstone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1066-1078, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:6:p:1065-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.