IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i2p339-352.html
   My bibliography  Save this article

Enhancing capillary trapping effectiveness through proper time scheduling of injection of supercritical CO 2 in heterogeneous formations

Author

Listed:
  • Ana González‐Nicolás
  • Luca Trevisan
  • Tissa H. Illangasekare
  • Abdullah Cihan
  • Jens T. Birkholzer

Abstract

The impact of geologic heterogeneity on capillary trapping of supercritical CO 2 (scCO 2 ) has been recognized and appraised through laboratory experimentation and modeling. However, how different injection strategies can be optimized to improve capillary trapping has not received adequate attention. We present a study based on stochastic analysis to show the impact of injection scheduling on capillary trapping of scCO 2 in heterogeneous geological formations. Improvement of trapping efficiency consists of maximizing the trapped volume within a predefined secure zone of the storage formation with the goal of avoiding plume intersection with potential leakage pathways. Using knowledge acquired from physical experiments in intermediate‐scale tanks with controlled heterogeneity, we conduct numerical simulations following a stochastic approach to extend the observed outcomes to a series of equally probable permeability scenarios. Our simulations involve the same combination of surrogate fluids that are used in the experiments to mimic viscosity and density contrasts between scCO 2 and brine. To account for uncertainty of formation heterogeneity, several permeability fields with three different variances and two horizontal correlation lengths are generated. The same volume of scCO 2 is emplaced using four different modes of injection scheduling. Results suggest that injection strategies aimed at enhancing capillary trapping of scCO 2 and increasing the probability of constraining the plume within a secure zone are strictly related to the specific heterogeneity of the reservoir. This preliminary theoretical finding suggests the potential for maximizing secure capillary trapping through the proper selection of injection schedule to fit the formation heterogeneity. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Ana González‐Nicolás & Luca Trevisan & Tissa H. Illangasekare & Abdullah Cihan & Jens T. Birkholzer, 2017. "Enhancing capillary trapping effectiveness through proper time scheduling of injection of supercritical CO 2 in heterogeneous formations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 339-352, April.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:2:p:339-352
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1646
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:2:p:339-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.