IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v4y2014i4p495-508.html
   My bibliography  Save this article

Experimental and rate‐based modeling study of CO 2 capture by aqueous monoethanolamine

Author

Listed:
  • Xiaofei Li
  • Shujuan Wang
  • Changhe Chen

Abstract

Reducing high energy consumption is one of the greatest challenges facing CO 2 capture by aqueous monoethanolamine. The regeneration energy and its energy components (sensible heat, heat of reaction, and water vaporization heat) were evaluated experimentally in a bench‐scale regeneration system. A rate‐based model was developed in an Aspen Plus simulator to simulate the desorption process. The results predicted by the rate‐based model are in good agreement with experimental data. The operational parameters for the standard absorption/desorption process for CO 2 capture are then optimized to reduce the energy consumption. The results show that for a 30 wt% MEA solution with 90% removal efficiency, the optimum operational parameters are an L/G ratio of 2.90 kg/kg, a lean loading of 0.24 mol/mol, a 5 °C temperature approach to the heat exchanger and a stripper operating pressure of 180 kPa with a 119 °C reboiler temperature. A minimum energy consumption of 3.52 GJ/tonCO 2 was achieved. Under the optimal process conditions, the enthalpy of absorption is the main contribution to the total regeneration energy followed by the water vaporization heat and sensible heat.

Suggested Citation

  • Xiaofei Li & Shujuan Wang & Changhe Chen, 2014. "Experimental and rate‐based modeling study of CO 2 capture by aqueous monoethanolamine," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(4), pages 495-508, August.
  • Handle: RePEc:wly:greenh:v:4:y:2014:i:4:p:495-508
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1419
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:4:y:2014:i:4:p:495-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.