IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v4y2014i1p99-120.html
   My bibliography  Save this article

Effects of fault‐zone architecture on earthquake magnitude and gas leakage related to CO 2 injection in a multi‐layered sedimentary system

Author

Listed:
  • Antonio P. Rinaldi
  • Pierre Jeanne
  • Jonny Rutqvist
  • Frédéric Cappa
  • Yves Guglielmi

Abstract

The presence of fluid within a fault zone can cause overpressure and trigger earthquakes. In this work, we study the influence of fault‐zone architecture on pore pressure distribution and on the resulting fault reactivation caused by CO 2 injection. In particular, we investigate the effect of the variation and distribution of lithological and rock physical properties within a fault zone embedded in a multi‐layer sedimentary system. Through numerical analysis, we compare several models where the complexity of the fault‐zone architecture and different layers (such as caprock and injection reservoir) are incrementally included. Results show how the presence of hydraulic and mechanical heterogeneity along the fault influences the pressure diffusion, as well as the effective normal and shear stress evolution. Hydromechanical heterogeneities (i) strengthen the fault zone resulting in earthquakes of small magnitude, and (ii) impede fluid migration upward along the fault. We also study the effects of the caprock and aquifer thickness on the resulting induced seismicity and CO 2 leakage, both in heterogeneous and homogeneous fault zones. Results show that a thin caprock or aquifer allows smaller events, but a much higher percentage of leakage through the caprock and into the upper aquifer. The amount of leakage reduces drastically in the case of a multi‐caprock, multi‐aquifer system.

Suggested Citation

  • Antonio P. Rinaldi & Pierre Jeanne & Jonny Rutqvist & Frédéric Cappa & Yves Guglielmi, 2014. "Effects of fault‐zone architecture on earthquake magnitude and gas leakage related to CO 2 injection in a multi‐layered sedimentary system," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(1), pages 99-120, February.
  • Handle: RePEc:wly:greenh:v:4:y:2014:i:1:p:99-120
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1403
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Bao & Zhangshuan Hou & Yilin Fang & Huiying Ren & Guang Lin, 2015. "Uncertainty quantification for evaluating the impacts of fracture zone on pressure build‐up and ground surface uplift during geological CO2 sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(3), pages 254-267, June.
    2. Víctor Vilarrasa & Jonny Rutqvist & Antonio Pio Rinaldi, 2015. "Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 449-461, August.
    3. Antonio P. Rinaldi & Victor Vilarrasa & Jonny Rutqvist & Frédéric Cappa, 2015. "Fault reactivation during CO 2 sequestration: Effects of well orientation on seismicity and leakage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 645-656, October.
    4. Liang Xu & Qi Li & Matthew Myers & Yongsheng Tan & Miao He & Happiness Ijeoma Umeobi & Xiaochun Li, 2021. "The effects of porosity and permeability changes on simulated supercritical CO2 migration front in tight glutenite under different effective confining pressures from 1.5 MPa to 21.5 MPa," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 19-36, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:4:y:2014:i:1:p:99-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.