IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v3y2013i2p124-135.html
   My bibliography  Save this article

Utilization of CO 2 as cushion gas for porous media compressed air energy storage

Author

Listed:
  • Curtis M. Oldenburg
  • Lehua Pan

Abstract

Porous media compressed air energy storage (PM‐CAES) and geologic carbon sequestration (GCS) can potentially be combined when CO 2 is used as the cushion gas. The large increase in density of CO 2 around its critical pressure at near‐critical temperature means that a PM‐CAES reservoir operated around the CO 2 critical pressure could potentially store more air (energy) for a given pressure rise in the reservoir. One‐dimensional (1D) radial TOUGH2 simulations of PM‐CAES with CO 2 as the cushion gas have been carried out to investigate pressurization and gas‐gas mixing effects. We find that pervasive pressure gradients in PM‐CAES make it desirable to position the air‐CO 2 interface close to the well, but cushion gas at such locations is subject to strong and undesirable air‐CO 2 mixing and subsequent production of CO 2 up the well. To avoid this negative effect, CO 2 cushion gas should be located at the far outer margins of storage reservoirs where mixing will be very slow. In such a configuration, the super‐compressibility of CO 2 will not be exploited, but CO 2 can be stored in the GCS context potentially earning significant value for the PM‐CAES project depending on the price of carbon. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Curtis M. Oldenburg & Lehua Pan, 2013. "Utilization of CO 2 as cushion gas for porous media compressed air energy storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 3(2), pages 124-135, April.
  • Handle: RePEc:wly:greenh:v:3:y:2013:i:2:p:124-135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    2. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    3. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    4. Guo, Chaobin & Zhang, Keni & Pan, Lehua & Cai, Zuansi & Li, Cai & Li, Yi, 2017. "Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 203(C), pages 948-958.
    5. Guo, Chaobin & Zhang, Keni & Li, Cai & Wang, Xiaoyu, 2016. "Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers," Energy, Elsevier, vol. 107(C), pages 48-59.
    6. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:3:y:2013:i:2:p:124-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.