IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v2y2012i1p36-45.html
   My bibliography  Save this article

Sensitivity analysis of the build decision for carbon capture and sequestration projects

Author

Listed:
  • Paul S. Fischbeck
  • David Gerard
  • Sean T. McCoy

Abstract

Carbon capture and sequestration (CCS) is a technology that could allow for continued use of fossil fuels in a carbon‐constrained world, smoothing the transition to non‐fossil energy sources. Our objective is to assess the commercial viability of CCS given pervasive future uncertainties, particularly uncertainties about future natural gas and CO2 prices. Using data from the Integrated Environmental Control Model (IECM), we develop an interactive Excel‐based spreadsheet tool to compare levelized‐average costs of four different new‐construction 500 MW power plants: natural gas combined cycle (NGCC) with CCS, NCGG without CCS, supercritical coal with CCS, and supercritical coal without CCS. With low natural gas prices, the NGCC without the sequestration option is the dominant technology. Overall, CCS projects for either natural gas or coal projects are unlikely to be the lowest‐cost option for CO2 prices less than $50 per ton. Finally, we examine several potential policy levers that could affect the deployment of CCS. © 2012 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Paul S. Fischbeck & David Gerard & Sean T. McCoy, 2012. "Sensitivity analysis of the build decision for carbon capture and sequestration projects," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 2(1), pages 36-45, February.
  • Handle: RePEc:wly:greenh:v:2:y:2012:i:1:p:36-45
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    2. Yanchi Jiang & Zhongxiao Zhang & Haojie Fan & Junjie Fan & Haiquan An, 2018. "Experimental study on hybrid MS†CA system for post†combustion CO2 capture," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 379-392, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:2:y:2012:i:1:p:36-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.