IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v14y2024i6p977-994.html
   My bibliography  Save this article

A bio‐reactive transport model for biomethanation in hydrogen underground storage sites

Author

Listed:
  • Jean Donald Minougou
  • Siroos Azizmohammadi
  • Raoof Gholami
  • Holger Ott

Abstract

Underground biomethanation, which relies on the subsurface microbial activity to convert hydrogen and carbon dioxide into methane, is a promising approach to support carbon capture, utilization, and storage technology. The process involves injecting hydrogen with captured CO2 into depleted oil and gas reservoirs or aquifers colonized by hydrogenotrophic methanogens that can convert these two substrates into methane. Despite the attractiveness of this technology, there are still uncertainties about the efficiency of the conversion process, particularly the impact of microbial parameters. To investigate the efficiency of the hydrogen conversion process, we relied on a bio‐reactive transport model that can mimic microbial growth and decay, consumption of substrates, and transport of reactants and products. It was found that the methane concentration peaks near the injection well when the hydrogen fraction is in the range of 75% to 80% of the injected gas composition. In addition, a noticeable hydrogen sulfide concentration can be produced due to sulfide ions in the brine. Using the Kozeny‐Carman relation, an attempt was made to correlate microbial growth with reduced porosity and permeability. It was then revealed that substrate consumption by microbes leads to a drastic increase in the microbial population in the subsurface, which can reduce the petrophysical properties of the reservoir, especially in the near wellbore area. The results obtained from a series of parametric analyses showed that the hydrogen concentration in the injected gas, pressure, well spacing, and injection rate are some of the most important parameters contributing to the biomethanation process. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Jean Donald Minougou & Siroos Azizmohammadi & Raoof Gholami & Holger Ott, 2024. "A bio‐reactive transport model for biomethanation in hydrogen underground storage sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 14(6), pages 977-994, December.
  • Handle: RePEc:wly:greenh:v:14:y:2024:i:6:p:977-994
    DOI: 10.1002/ghg.2307
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2307
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:14:y:2024:i:6:p:977-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.