IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i2ne70002.html
   My bibliography  Save this article

Stacking Weights and Model Space Selection in Frequentist Model Averaging for Benchmark Dose Estimation

Author

Listed:
  • Jens Riis Baalkilde
  • Niels Richard Hansen
  • Signe Marie Jensen

Abstract

In dose‐response modeling, several models can often yield satisfactory fits to the observed data. The current practice in risk assessment is to use model averaging, which is a way to combine multiple models in a weighted average. A key parameter in risk assessment is the benchmark dose, the dose resulting in a predefined abnormal change in response. Current practice when applying frequentist model averaging is to use weights based on the Akaike Information Criterion (AIC). This paper introduces stacking weights as an alternative for dose‐response modeling and generalizes a Diversity Index from dichotomous to continuous responses for model space selection. Three simulation studies were conducted to evaluate the new methods. They showed that, in three realistic scenarios, recommended strategies generally performed well, with stacking weights outperforming AIC weights in several cases. Strategies involving model selection were less effective. However, in a challenging scenario, none of the methods performed well. Due to the promising results of stacking weights, they have been added to the R package “bmd.”

Suggested Citation

  • Jens Riis Baalkilde & Niels Richard Hansen & Signe Marie Jensen, 2025. "Stacking Weights and Model Space Selection in Frequentist Model Averaging for Benchmark Dose Estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e70002
    DOI: 10.1002/env.70002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70002
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e70002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.