IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i2ne2898.html
   My bibliography  Save this article

Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al

Author

Listed:
  • Philipp Otto

Abstract

Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade‐off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black‐box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real‐time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.

Suggested Citation

  • Philipp Otto, 2025. "Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2898
    DOI: 10.1002/env.2898
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2898
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.