IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i8ne2886.html
   My bibliography  Save this article

A Varying Precision Beta Prime Autoregressive Moving Average Model With Application to Water Flow Data

Author

Listed:
  • Kleber H. Santos
  • Francisco Cribari‐Neto

Abstract

We introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision parameter is parsimonious, incorporating first‐order time dependence. Changes over time in the shape of the density are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed‐form expressions for the model's conditional log‐likelihood function, score vector, and Fisher's information matrix. Monte Carlo simulation results are presented. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.

Suggested Citation

  • Kleber H. Santos & Francisco Cribari‐Neto, 2024. "A Varying Precision Beta Prime Autoregressive Moving Average Model With Application to Water Flow Data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(8), December.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2886
    DOI: 10.1002/env.2886
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2886
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:8:n:e2886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.