IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i8ne2781.html
   My bibliography  Save this article

A vector of point processes for modeling interactions between and within species using capture‐recapture data

Author

Listed:
  • Alex Diana
  • Eleni Matechou
  • Jim E. Griffin
  • Yadvendradev Jhala
  • Qamar Qureshi

Abstract

Capture‐recapture (CR) data and corresponding models have been used extensively to estimate the size of wildlife populations when detection probability is less than 1. When the locations of traps or cameras used to capture or detect individuals are known, spatially‐explicit CR models are used to infer the spatial pattern of the individual locations and population density. Individual locations, referred to as activity centers (ACs), are defined as the locations around which the individuals move. These ACs are typically assumed to be independent, and their spatial pattern is modeled using homogeneous Poisson processes. However, this assumption is often unrealistic, since individuals can interact with each other, either within a species or between different species. In this article, we consider a vector of point processes from the general class of interaction point processes and develop a model for CR data that can account for interactions, in particular repulsions, between and within multiple species. Interaction point processes present a challenge from an inferential perspective because of the intractability of the normalizing constant of the likelihood function, and hence standard Markov chain Monte Carlo procedures to perform Bayesian inference cannot be applied. Therefore, we adopt an inference procedure based on the Monte Carlo Metropolis Hastings algorithm, which scales well when modeling more than one species. Finally, we adopt an inference method for jointly sampling the latent ACs and the population size based on birth and death processes. This approach also allows us to adaptively tune the proposal distribution of new points, which leads to better mixing especially in the case of non‐uniformly distributed traps. We apply the model to a CR data‐set on leopards and tigers collected at the Corbett Tiger Reserve in India. Our findings suggest that between species repulsion is stronger than within species, while tiger population density is higher than leopard population density at the park.

Suggested Citation

  • Alex Diana & Eleni Matechou & Jim E. Griffin & Yadvendradev Jhala & Qamar Qureshi, 2022. "A vector of point processes for modeling interactions between and within species using capture‐recapture data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:8:n:e2781
    DOI: 10.1002/env.2781
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2781
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    2. Simon J. Bonner & Wei Zhang & Jiaqi Mu, 2024. "On the identifiability of the trinomial model for mark‐recapture‐recovery studies," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:8:n:e2781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.