IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i2ne2596.html
   My bibliography  Save this article

Bayesian time‐varying quantile regression to extremes

Author

Listed:
  • Fernando Ferraz Do Nascimento
  • Marcelo Bourguignon

Abstract

Maximum analysis consists of modeling the maximums of a data set by considering a specific distribution. Extreme value theory (EVT) shows that, for a sufficiently large block size, the maxima distribution is approximated by the generalized extreme value (GEV) distribution. Under EVT, it is important to observe the high quantiles of the distribution. In this sense, quantile regression techniques fit the data analysis of maxima by using the GEV distribution. In this context, this work presents the quantile regression extension for the GEV distribution. In addition, a time‐varying quantile regression model is presented, and the important properties of this approach are displayed. The parameter estimation of these new models is carried out under the Bayesian paradigm. The results of the temperature data and river quota application show the advantage of using this model, which allows us to estimate directly the quantiles as a function of the covariates. This shows which of them influences the occurrence of extreme temperature and the magnitude of this influence.

Suggested Citation

  • Fernando Ferraz Do Nascimento & Marcelo Bourguignon, 2020. "Bayesian time‐varying quantile regression to extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2596
    DOI: 10.1002/env.2596
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2596
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.