IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i2ne2594.html
   My bibliography  Save this article

Spatio‐Temporal data fusion for massive sea surface temperature data from MODIS and AMSR‐E instruments

Author

Listed:
  • Pulong Ma
  • Emily L. Kang

Abstract

Remote sensing data have been widely used to study various geophysical processes. With the advances in remote sensing technology, massive amount of remote sensing data are collected in space over time. Different satellite instruments typically have different footprints, measurement‐error characteristics, and data coverages. To combine data sets from different satellite instruments, we propose a dynamic fused Gaussian process (DFGP) model that enables fast statistical inference such as filtering and smoothing for massive spatio‐temporal data sets in a data‐fusion context. Based upon a spatio‐temporal‐random‐effect model, the DFGP methodology represents the underlying true process with two components: a linear combination of a small number of basis functions and random coefficients with a general covariance matrix, together with a linear combination of a large number of basis functions and Markov random coefficients. To model the underlying geophysical process at different spatial resolutions, we rely on the change‐of‐support property, which also allows efficient computations in the DFGP model. To estimate model parameters, we devise a computationally efficient stochastic expectation‐maximization algorithm to ensure its scalability for massive data sets. The DFGP model is applied to a total of 3.7 million sea surface temperature data sets in the tropical Pacific Ocean for a one‐week time period in 2010 from Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer‐Earth Observing System (AMSR‐E) instruments.

Suggested Citation

  • Pulong Ma & Emily L. Kang, 2020. "Spatio‐Temporal data fusion for massive sea surface temperature data from MODIS and AMSR‐E instruments," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2594
    DOI: 10.1002/env.2594
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2594
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    3. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.