IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i2ne2572.html
   My bibliography  Save this article

Model‐based clustering for noisy longitudinal circular data, with application to animal movement

Author

Listed:
  • M. Ranalli
  • A. Maruotti

Abstract

In this work, we introduce a model for circular data analysis to robustly estimate parameters, under a longitudinal clustering setting. A hidden Markov model for longitudinal circular data combined with a uniform conditional density on the circle to capture noise observations is proposed. A set of exogenous covariates is available; they are assumed to affect the evolution of clustering over time. Parameter estimation is carried out through a hybrid expectation–maximization algorithm, using recursions widely adopted in the hidden Markov model literature. Examples of application of the proposal on real and simulated data are performed to show the effectiveness of the proposal.

Suggested Citation

  • M. Ranalli & A. Maruotti, 2020. "Model‐based clustering for noisy longitudinal circular data, with application to animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2572
    DOI: 10.1002/env.2572
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2572
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:2:n:e2572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.