IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i1ne2580.html
   My bibliography  Save this article

Trend assessment for daily snow depths with changepoint considerations

Author

Listed:
  • J. Lee
  • R. Lund
  • J. Woody
  • Y. Xu

Abstract

This paper develops methods to estimate a long‐term trend in a daily snow depth record. The methods use a storage equation model for the daily snow depths that allows for seasonality, support set features (snow depths cannot be negative), correlation, and mean level shift changepoint features. Changepoints can occur in snow processes whenever observing stations move or station instrumentation is changed; they are critical features to consider when estimating a long‐term trend. A likelihood objective function is developed for the storage model and is used to estimate model parameters. Genetic algorithms are used to optimize a minimum descriptive length model selection criterion that estimates the changepoint numbers and locations. The methods are applied in the analysis of a daily series recorded near Warm Lake, Idaho, from 1948 to 2009.

Suggested Citation

  • J. Lee & R. Lund & J. Woody & Y. Xu, 2020. "Trend assessment for daily snow depths with changepoint considerations," Environmetrics, John Wiley & Sons, Ltd., vol. 31(1), February.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:1:n:e2580
    DOI: 10.1002/env.2580
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2580
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:1:n:e2580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.