IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i6ne2566.html
   My bibliography  Save this article

Bayesian inference in natural hazard analysis for incomplete and uncertain data

Author

Listed:
  • A. Smit
  • A. Stein
  • A. Kijko

Abstract

This study presents a method for estimating two area‐characteristic natural hazard recurrence parameters. The mean activity rate and the frequency–size power law exponent are estimated using Bayesian inference on combined empirical datasets that consist of prehistoric, historic, and instrumental information. The method provides for incompleteness, uncertainty in the event size determination, uncertainty associated with the parameters in the applied occurrence models, and the validity of event occurrences. This aleatory and epistemic uncertainty is introduced in the models through mixture distributions and weighted likelihood functions. The proposed methodology is demonstrated using a synthetic earthquake dataset and an observed tsunami dataset for Japan. The contribution of the different types of data, prior information, and the uncertainty is quantified. For the synthetic dataset, the introduction of model and event size uncertainties provides estimates quite close to the assumed true values, whereas the tsunami dataset shows that the long series of historic data influences the estimates of the recurrence parameters much more than the recent instrumental data. The conclusion of the study is that the proposed methodology provides a useful and adaptable tool for the probabilistic assessment of various types of natural hazards.

Suggested Citation

  • A. Smit & A. Stein & A. Kijko, 2019. "Bayesian inference in natural hazard analysis for incomplete and uncertain data," Environmetrics, John Wiley & Sons, Ltd., vol. 30(6), September.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:6:n:e2566
    DOI: 10.1002/env.2566
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2566
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:6:n:e2566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.