IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i4ne2524.html
   My bibliography  Save this article

Predicting climate types for the Continental United States using unsupervised clustering techniques

Author

Listed:
  • D. Sathiaraj
  • X. Huang
  • J. Chen

Abstract

The problem of clustering climate data observation sites and grouping them by their climate types is considered. Machine learning–based clustering algorithms are used in analyzing climate data time series from more than 3,000 climate observation sites in the United States, with the objective of classifying climate type for regions across the United States. Understanding the climate type of a region has applications in public health, environment, actuarial science, insurance, agriculture, and engineering. In this study, daily climate data measurements for temperature and precipitation from the time period 1946–2015 have been used. The daily data observations were grouped into three derived data sets: a monthly data set (daily data aggregated by month), an annual data set (daily data aggregated by year), and a threshold exceeding frequency data set (threshold exceeding frequency provides the frequency of occurrence of certain climate extremes). Three existing clustering algorithms from the literature, namely, k‐means, density‐based spatial clustering of applications with noise, and balanced iterative reducing and clustering using hierarchies, were each applied to cluster each of the data sets, and the resulting clusters were assessed using standardized clustering indices. The results from these unsupervised learning techniques revealed the suitability and applicability of these algorithms in the climate domain. The clusters identified by these techniques were also compared with existing climate classification types such as the Köppen classification system. Additionally, the work also developed an interactive web and map‐based data visualization system that uses efficient big data management techniques to provide clustering solutions in real time and to display the results of the clustering analysis.

Suggested Citation

  • D. Sathiaraj & X. Huang & J. Chen, 2019. "Predicting climate types for the Continental United States using unsupervised clustering techniques," Environmetrics, John Wiley & Sons, Ltd., vol. 30(4), June.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:4:n:e2524
    DOI: 10.1002/env.2524
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2524
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ania Cravero & Sebastián Pardo & Patricio Galeas & Julio López Fenner & Mónica Caniupán, 2022. "Data Type and Data Sources for Agricultural Big Data and Machine Learning," Sustainability, MDPI, vol. 14(23), pages 1-37, December.
    2. Sumin Park & Haemi Park & Jungho Im & Cheolhee Yoo & Jinyoung Rhee & Byungdoo Lee & ChunGeun Kwon, 2019. "Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:4:n:e2524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.