IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i2ne2528.html
   My bibliography  Save this article

Statistical harmonization and uncertainty assessment in the comparison of satellite and radiosonde climate variables

Author

Listed:
  • F. Finazzi
  • A. Fassò
  • F. Madonna
  • I. Negri
  • B. Sun
  • M. Rosoldi

Abstract

Satellite product validation is a key to ensure the delivery of quality products for climate and weather applications. To do this, a fundamental step is the comparison with other instruments, such as radiosonde. This is especially true for essential climate variables such as temperature and humidity. Thanks to a functional data representation, this paper uses a likelihood‐based approach that exploits the measurement uncertainties in a natural way. In particular, the comparison of temperature and humidity radiosonde measurements collected within the network of the Universal Rawinsonde Observation Program (RAOB) and the corresponding atmospheric profiles derived from the infrared atmospheric sounding interferometer aboard MetOp‐A and MetOp‐B satellites is developed with the aim of understanding the vertical smoothing mismatch uncertainty. Moreover, conventional RAOB functional data representation is assessed by means of a comparison with radiosonde reference measurements given by the Global Climate Observing System (GCOS) Reference Upper‐Air Network (GRUAN), which provides high‐resolution fully traceable radio‐sounding profiles. In this way, the uncertainty related to coarse vertical resolution, or sparseness, of the conventional RAOB is assessed. It has been found that the uncertainty of vertical smoothing mismatch averaged along the profile is 0.50 K for temperature and 0.16 g/kg for water‐vapor mixing ratio. Moreover, the uncertainty related to RAOB sparseness, averaged along the profile, is 0.29 K for temperature and 0.13 g/kg for water‐vapor mixing ratio.

Suggested Citation

  • F. Finazzi & A. Fassò & F. Madonna & I. Negri & B. Sun & M. Rosoldi, 2019. "Statistical harmonization and uncertainty assessment in the comparison of satellite and radiosonde climate variables," Environmetrics, John Wiley & Sons, Ltd., vol. 30(2), March.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:2:n:e2528
    DOI: 10.1002/env.2528
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2528
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:2:n:e2528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.