IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v29y2018i8ne2531.html
   My bibliography  Save this article

Model aggregation using optimal transport and applications in wind speed forecasting

Author

Listed:
  • G. I. Papayiannis
  • G. N. Galanis
  • A. N. Yannacopoulos

Abstract

In several environmental affected socio‐economic activities, including renewable energy site assessment, search and rescue operations, and local microclimate modeling, the need of very local wind speed prediction is critical and not completely covered by the use of numerical weather prediction models. In meteorology and, particularly, in wind speed prediction, the spatial location of the prediction does not coincide with the spatial locations where numerical models provide estimates of the relevant quantity (which are typically grid points used for the numerical resolution of the wind transport equations). Hence, the important problem of constructing a predictive model for the wind speed at the required location using a combination of actual measurements and model predictions arises. This problem is far from trivial on account of the fact that measurements and predictions do not refer to the same quantity for the reason that typical grid points for the numerical scheme that provide model predictions and the location of the meteorological stations that provide measurements do not coincide. In this work, a new approach is proposed based on optimal transportation theory for the aggregation of model predictions and measurements for the construction of an optimal predictor for wind speed at the location of interest. Our model provides a linear predictive model in the space of probability distributions of the predictors (Wasserstein space), which is then mapped into observation space using a generalized quantile regression technique. Importantly, the proposed scheme allows also for the construction of zone monitoring the extremes, which when applied to real data, provides superior results with respect to other existing methods.

Suggested Citation

  • G. I. Papayiannis & G. N. Galanis & A. N. Yannacopoulos, 2018. "Model aggregation using optimal transport and applications in wind speed forecasting," Environmetrics, John Wiley & Sons, Ltd., vol. 29(8), December.
  • Handle: RePEc:wly:envmet:v:29:y:2018:i:8:n:e2531
    DOI: 10.1002/env.2531
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2531
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios I. Papayiannis, 2023. "A Framework for Treating Model Uncertainty in the Asset Liability Management Problem," Papers 2310.11987, arXiv.org.
    2. Georgios I. Papayiannis, 2022. "Static Hedging of Freight Risk under Model Uncertainty," Papers 2207.00862, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:29:y:2018:i:8:n:e2531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.