IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v29y2018i5-6ne2463.html
   My bibliography  Save this article

Testing for local structure in spatiotemporal point pattern data

Author

Listed:
  • Marianna Siino
  • Francisco J. Rodríguez‐Cortés
  • Jorge Mateu
  • Giada Adelfio

Abstract

The detection of clustering structure in a point pattern is one of the main focuses of attention in spatiotemporal data mining. Indeed, statistical tools for clustering detection and identification of individual events belonging to clusters are welcome in epidemiology and seismology. Local second‐order characteristics provide information on how an event relates to nearby events. In this work, we extend local indicators of spatial association (known as LISA functions) to the spatiotemporal context (which will be then called LISTA functions). These functions are then used to build local tests of clustering to analyse differences in local spatiotemporal structures. We present a simulation study to assess the performance of the testing procedure, and we apply this methodology to earthquake data.

Suggested Citation

  • Marianna Siino & Francisco J. Rodríguez‐Cortés & Jorge Mateu & Giada Adelfio, 2018. "Testing for local structure in spatiotemporal point pattern data," Environmetrics, John Wiley & Sons, Ltd., vol. 29(5-6), August.
  • Handle: RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2463
    DOI: 10.1002/env.2463
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2463
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    3. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    4. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.