IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v29y2018i5-6ne2447.html
   My bibliography  Save this article

Bivariate geostatistical modelling of the relationship between Loa loa prevalence and intensity of infection

Author

Listed:
  • Emanuele Giorgi
  • Daniela K. Schlüter
  • Peter J. Diggle

Abstract

Loiasis is a neglected tropical disease (NTD) caused by the parasitic roundworm Loa loa. A challenge faced by current multinational programmes to control two other diseases, namely, lymphatic filariasis and onchocerciasis, by mass administration of prophylactic medication to at‐risk communities is that individuals highly coinfected with Loa loa are at risk of developing serious adverse reactions to the medication. For this reason, understanding the geographical distribution of Loa loa prevalence and the distribution of microfilarial loads in communities has become of crucial importance. In this paper, we develop methodology to analyse data on microfilariae counts per millilitre of blood whilst allowing for spatial correlation. One feature of the data is the excess of zero counts, which makes the use of standard geostatistical methods for prevalence data inappropriate. This phenomenon, also known as zero inflation, is typical of count data from NTDs, whose endemic boundaries are often unknown, thus leading to the inclusion of disease‐free communities in the sampling frame. We introduce a bivariate geostatistical model in order to study the relationship between the distributions of prevalence and intensity of Loa loa infections at the community level. We show through a simulation study that the spatial model leads to more precise spatial predictions than the nonspatial approach used by Schlüter et al. (), and accordingly provide a geostatistical reanalysis of the Loa loa data.

Suggested Citation

  • Emanuele Giorgi & Daniela K. Schlüter & Peter J. Diggle, 2018. "Bivariate geostatistical modelling of the relationship between Loa loa prevalence and intensity of infection," Environmetrics, John Wiley & Sons, Ltd., vol. 29(5-6), August.
  • Handle: RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2447
    DOI: 10.1002/env.2447
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2447
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Douwes‐Schultz & Alexandra M. Schmidt, 2022. "Zero‐state coupled Markov switching count models for spatio‐temporal infectious disease spread," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 589-612, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:29:y:2018:i:5-6:n:e2447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.