IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v28y2017i3ne2440.html
   My bibliography  Save this article

Modeling joint abundance of multiple species using Dirichlet process mixtures

Author

Listed:
  • Devin S. Johnson
  • Elizabeth H. Sinclair

Abstract

We present a method for modeling the distributions of multiple species simultaneously using Dirichlet process random effects to cluster species into guilds. Guilds are ecological groups of species that behave or react similarly to some environmental conditions. By modeling latent guild structure, we capture the cross‐correlations in abundance or occurrence of species over surveys. In addition, ecological information about the community structure is obtained as a by‐product of the model. By clustering species into similar functional groups, prediction uncertainty of community structure at additional sites is reduced over treating each species separately. The proposed model also presents an improvement over previously proposed joint species distribution models by reducing the number of parameters necessary to capture interspecies correlations and eliminating the need to have a priori information on the number of groups or a distance metric over species traits. The method is illustrated with a small simulation demonstration, as well as an analysis of a mesopelagic fish survey from the eastern Bering Sea near Alaska. The simulation data analysis shows that guild membership can be extracted as the differences between groups become larger and if guild differences are small, the model naturally collapses all the species into a small number of guilds, which increases predictive efficiency by reducing the number of parameters to that which is supported by the data.

Suggested Citation

  • Devin S. Johnson & Elizabeth H. Sinclair, 2017. "Modeling joint abundance of multiple species using Dirichlet process mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 28(3), May.
  • Handle: RePEc:wly:envmet:v:28:y:2017:i:3:n:e2440
    DOI: 10.1002/env.2440
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2440
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henry R. Scharf & Ann M. Raiho & Sierra Pugh & Carl A. Roland & David K. Swanson & Sarah E. Stehn & Mevin B. Hooten, 2022. "Multivariate Bayesian clustering using covariate‐informed components with application to boreal vegetation sensitivity," Biometrics, The International Biometric Society, vol. 78(4), pages 1427-1440, December.
    2. Juho Kettunen & Lauri Mehtätalo & Eeva‐Stiina Tuittila & Aino Korrensalo & Jarno Vanhatalo, 2024. "Joint species distribution modeling with competition for space," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:28:y:2017:i:3:n:e2440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.