IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v21y2018i2p87-113.html
   My bibliography  Save this article

Adaptive wild bootstrap tests for a unit root with non‐stationary volatility

Author

Listed:
  • H. Peter Boswijk
  • Yang Zu

Abstract

Recent research has emphasized that permanent changes in the innovation variance (caused by structural shifts or an integrated volatility process) lead to size distortions in conventional unit root tests. It has been shown how these size distortions can be resolved using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the unit root testing problem when the non‐stationary volatility process is known. Next, we show that under suitable conditions, adaptation with respect to the volatility process is possible, in the sense that non‐parametric estimation of the volatility process leads to the same asymptotic power envelope. Implementation of the resulting test involves cross‐validation and the wild bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite sample properties, and an empirical analysis of real exchange rates illustrates the applicability of the proposed procedures.

Suggested Citation

  • H. Peter Boswijk & Yang Zu, 2018. "Adaptive wild bootstrap tests for a unit root with non‐stationary volatility," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 87-113, June.
  • Handle: RePEc:wly:emjrnl:v:21:y:2018:i:2:p:87-113
    DOI: 10.1111/ectj.12100
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ectj.12100
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ectj.12100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Peter Boswijk & Yang Zu, 2022. "Adaptive Testing for Cointegration With Nonstationary Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 744-755, April.
    2. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    3. Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).
    4. Sam Astill & David I Harvey & Stephen J Leybourne & A M Robert Taylor & Yang Zu, 2023. "CUSUM-Based Monitoring for Explosive Episodes in Financial Data in the Presence of Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 187-227.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:21:y:2018:i:2:p:87-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.