IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v20y2017i3ps61-s85.html
   My bibliography  Save this article

Sparse estimation of huge networks with a block‐wise structure

Author

Listed:
  • Francesco Moscone
  • Elisa Tosetti
  • Veronica Vinciotti

Abstract

Networks with a very large number of nodes appear in many application areas and pose challenges for traditional Gaussian graphical modelling approaches. In this paper, we focus on the estimation of a Gaussian graphical model when the dependence between variables has a block‐wise structure. We propose a penalized likelihood estimation of the inverse covariance matrix, also called Graphical LASSO, applied to block averages of observations, and we derive its asymptotic properties. Monte Carlo experiments, comparing the properties of our estimator with those of the conventional Graphical LASSO, show that the proposed approach works well in the presence of block‐wise dependence structure and that it is also robust to possible model misspecification. We conclude the paper with an empirical study on economic growth and convergence of 1,088 European small regions in the years 1980 to 2012. While requiring a priori information on the block structure – e.g. given by the hierarchical structure of data – our approach can be adopted for estimation and prediction using very large panel data sets. Also, it is particularly useful when there is a problem of missing values and outliers or when the focus of the analysis is on out‐of‐sample prediction.

Suggested Citation

  • Francesco Moscone & Elisa Tosetti & Veronica Vinciotti, 2017. "Sparse estimation of huge networks with a block‐wise structure," Econometrics Journal, Royal Economic Society, vol. 20(3), pages 61-85, October.
  • Handle: RePEc:wly:emjrnl:v:20:y:2017:i:3:p:s61-s85
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12078
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018. "Testing for breaks in the weighting matrix," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
    2. Lisi, Domenico & Moscone, Francesco & Tosetti, Elisa & Vinciotti, Veronica, 2021. "Hospital quality interdependence in a competitive institutional environment: Evidence from Italy," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    3. Bofei Xiao & Bo Lei & Wei Lan & Bin Guo, 2022. "A blockwise network autoregressive model with application for fraud detection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1043-1065, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:20:y:2017:i:3:p:s61-s85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.