IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v20y2017i2p259-269.html
   My bibliography  Save this article

A note on sufficiency in binary panel models

Author

Listed:
  • Koen Jochmans
  • Thierry Magnac

Abstract

Consider estimating the slope coefficients of a fixed‐effect binary‐choice model from two‐period panel data. Two approaches to semiparametric estimation at the regular parametric rate have been proposed: one is based on a sufficiency requirement, and the other is based on a conditional‐median restriction. We show that, under standard assumptions, both conditions are equivalent.

Suggested Citation

  • Koen Jochmans & Thierry Magnac, 2017. "A note on sufficiency in binary panel models," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 259-269, June.
  • Handle: RePEc:wly:emjrnl:v:20:y:2017:i:2:p:259-269
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12091
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thierry Magnac, 2004. "Panel Binary Variables and Sufficiency: Generalizing Conditional Logit," Econometrica, Econometric Society, vol. 72(6), pages 1859-1876, November.
    2. Myoung-jae Lee, 1999. "A Root-N Consistent Semiparametric Estimator for Related-Effect Binary Response Panel Data," Econometrica, Econometric Society, vol. 67(2), pages 427-434, March.
    3. Manski, Charles F, 1987. "Semiparametric Analysis of Random Effects Linear Models from Binary Panel Data," Econometrica, Econometric Society, vol. 55(2), pages 357-362, March.
    4. Gary Chamberlain, 2010. "Binary Response Models for Panel Data: Identification and Information," Econometrica, Econometric Society, vol. 78(1), pages 159-168, January.
    5. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    6. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:spo:wpmain:info:hdl:2441/2t7dgrpjh58e9a93hqot3nu9k3 is not listed on IDEAS
    2. repec:hal:spmain:info:hdl:2441/2t7dgrpjh58e9a93hqot3nu9k3 is not listed on IDEAS
    3. Koen Jochmans & Thierry Magnac, 2017. "A note on sufficiency in binary panel models," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 259-269, June.
    4. repec:hal:wpspec:info:hdl:2441/2t7dgrpjh58e9a93hqot3nu9k3 is not listed on IDEAS
    5. Laura Liu & Alexandre Poirier & Ji-Liang Shiu, 2021. "Identification and Estimation of Partial Effects in Nonlinear Semiparametric Panel Models," Papers 2105.12891, arXiv.org, revised Jul 2024.
    6. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    7. repec:spo:wpmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    8. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2021. "Inference on semiparametric multinomial response models," Quantitative Economics, Econometric Society, vol. 12(3), pages 743-777, July.
    9. repec:spo:wpecon:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    10. Michael Lechner & Stefan Lollivier & Thierry Magnac, 2005. "Parametric Binary Choice Models," University of St. Gallen Department of Economics working paper series 2005 2005-23, Department of Economics, University of St. Gallen.
    11. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    12. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.
    13. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    14. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    15. Santiago Pereda-Fernández, 2021. "Copula-Based Random Effects Models for Clustered Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 575-588, March.
    16. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    17. Stefan Hoderlein & Yuya Sasaki, 2011. "On the role of time in nonseparable panel data models," CeMMAP working papers CWP15/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    19. Manuel Arellano, 2003. "Discrete choices with panel data," Investigaciones Economicas, Fundación SEPI, vol. 27(3), pages 423-458, September.
    20. Fu Ouyang & Thomas T. Yang, 2023. "Semiparametric Discrete Choice Models for Bundles," Papers 2306.04135, arXiv.org, revised Nov 2023.
    21. Ai, Chunrong & Gan, Li, 2010. "An alternative root-n consistent estimator for panel data binary choice models," Journal of Econometrics, Elsevier, vol. 157(1), pages 93-100, July.
    22. Fran�ois Laisney & Michael Lechner, 2003. "Almost Consistent Estimation of Panel Probit Models with "Small" Fixed Effects," Econometric Reviews, Taylor & Francis Journals, vol. 22(1), pages 1-28, February.
    23. Bo E Honoré & Áureo de Paula, 2021. "Identification in simple binary outcome panel data models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 78-93.
    24. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    25. Ghanem, Dalia, 2017. "Testing identifying assumptions in nonseparable panel data models," Journal of Econometrics, Elsevier, vol. 197(2), pages 202-217.
    26. Gayle, Wayne-Roy, 2013. "Identification and N-consistent estimation of a nonlinear panel data model with correlated unobserved effects," Journal of Econometrics, Elsevier, vol. 175(2), pages 71-83.
    27. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:20:y:2017:i:2:p:259-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.