IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v93y2025i2p539-568.html
   My bibliography  Save this article

Double Robust Bayesian Inference on Average Treatment Effects

Author

Listed:
  • Christoph Breunig
  • Ruixuan Liu
  • Zhengfei Yu

Abstract

We propose a double robust Bayesian inference procedure on the average treatment effect (ATE) under unconfoundedness. For our new Bayesian approach, we first adjust the prior distributions of the conditional mean functions, and then correct the posterior distribution of the resulting ATE. Both adjustments make use of pilot estimators motivated by the semiparametric influence function for ATE estimation. We prove asymptotic equivalence of our Bayesian procedure and efficient frequentist ATE estimators by establishing a new semiparametric Bernstein–von Mises theorem under double robustness; that is, the lack of smoothness of conditional mean functions can be compensated by high regularity of the propensity score and vice versa. Consequently, the resulting Bayesian credible sets form confidence intervals with asymptotically exact coverage probability. In simulations, our method provides precise point estimates of the ATE through the posterior mean and delivers credible intervals that closely align with the nominal coverage probability. Furthermore, our approach achieves a shorter interval length in comparison to existing methods. We illustrate our method in an application to the National Supported Work Demonstration following LaLonde (1986) and Dehejia and Wahba (1999).

Suggested Citation

  • Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2025. "Double Robust Bayesian Inference on Average Treatment Effects," Econometrica, Econometric Society, vol. 93(2), pages 539-568, March.
  • Handle: RePEc:wly:emetrp:v:93:y:2025:i:2:p:539-568
    DOI: 10.3982/ECTA21442
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA21442
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA21442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:93:y:2025:i:2:p:539-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.