IDEAS home Printed from https://ideas.repec.org/a/wly/coacre/v35y2018i3p1464-1498.html
   My bibliography  Save this article

Relating Product Prices to Long‐Run Marginal Cost: Evidence from Solar Photovoltaic Modules

Author

Listed:
  • Stefan Reichelstein
  • Anshuman Sahoo

Abstract

A basic tenet of microeconomics is that for a competitive industry in equilibrium the market price of a product will be equal to its marginal cost. This paper develops a model framework and a corresponding empirical inference procedure for estimating long‐run marginal cost in industries where production costs decline over time. In the context of the solar photovoltaic (PV) module industry, we rely primarily on firm‐level financial accounting data to estimate the long‐run marginal cost of PV modules for the years 2008–2013. During those years, the industry experienced both unprecedented price declines and significant expansions of manufacturing capacity. We compare the trajectory of average sales prices with the estimated long‐run marginal costs in order to quantify the extent to which actual price declines were attributable to reductions in production costs. The trajectory of estimated product costs is then extrapolated to forecast an equilibrium trend line for future PV module prices. Selon un principe de base de la microéconomique, dans un secteur d'activité concurrentiel en situation d'équilibre, le prix du marché d'un produit sera égal à son coût marginal. Les auteurs élaborent un cadre modèle et une procédure d'inférence empirique correspondante servant à l'estimation du coût marginal à long terme dans les secteurs où les coûts de production déclinent avec le temps. Dans le contexte du secteur des modules photovoltaïques (PV) solaires, les auteurs s'appuient principalement sur les données comptables générales de l'entreprise pour estimer le coût marginal à long terme des modules PV pour les années 2008 à 2013. Durant ces années, des baisses de prix sans précédent ainsi que d'importantes expansions de la capacité de production ont marqué ce secteur d'activité. Les auteurs comparent l'évolution des prix de vente moyens aux estimations des coûts marginaux à long terme afin de quantifier la mesure dans laquelle les baisses de prix réelles étaient attribuables à la diminution des coûts de production. L'évolution des coûts estimatifs des produits est ensuite extrapolée, ce qui permet d'obtenir une courbe de tendance à l'équilibre des prix futurs des modules PV.

Suggested Citation

  • Stefan Reichelstein & Anshuman Sahoo, 2018. "Relating Product Prices to Long‐Run Marginal Cost: Evidence from Solar Photovoltaic Modules," Contemporary Accounting Research, John Wiley & Sons, vol. 35(3), pages 1464-1498, September.
  • Handle: RePEc:wly:coacre:v:35:y:2018:i:3:p:1464-1498
    DOI: 10.1111/1911-3846.12319
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1911-3846.12319
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1911-3846.12319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aïd, René & Bahlali, Mohamed & Creti, Anna, 2023. "Green innovation downturn: The role of imperfect competition," Energy Economics, Elsevier, vol. 123(C).
    2. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Cost dynamics of clean energy technologies," ZEW Discussion Papers 21-054, ZEW - Leibniz Centre for European Economic Research.
    3. Sunil Dutta & Stefan J. Reichelstein, 2019. "Capacity Rights and Full Cost Transfer Pricing," CESifo Working Paper Series 7968, CESifo.
    4. Livdan, Dmitry & Nezlobin, Alexander, 2022. "Incentivizing irreversible investment," LSE Research Online Documents on Economics 110531, London School of Economics and Political Science, LSE Library.
    5. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    7. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:35:y:2018:i:3:p:1464-1498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.