Author
Listed:
- Mark E. Evans
- Kenneth Njoroge
- Kevin Ow Yong
Abstract
In this paper, we propose and empirically test a cross†sectional profitability forecasting model which incorporates two major improvements relative to extant models. First, in terms of model construction, we incorporate mean reversion through the use of a two†stage partial adjustment model and inclusion of a number of additional relevant determinants of profitability. Second, in terms of model estimation, we employ least absolute deviation (LAD) analysis instead of ordinary least squares because the former approach is able to better accommodate outliers. Results reveal that forecasts from our model are more accurate than three extant models at every forecast horizon considered and more accurate than consensus analyst forecasts at forecast horizons of two through five years. Further analysis reveals that LAD estimation provides the greatest incremental accuracy improvement followed by the inclusion of income subcomponents as predictor variables, and implementation of the two†stage partial adjustment model. In terms of economic relevance, we find that forecasts from our model are informative about future returns, incremental to forecasts from other models, analysts’ forecasts, and standard risk factors. Overall, our results are important because they document the increased accuracy and economic relevance of a cross†sectional profitability forecasting model which incorporates improvements to extant models in terms of model construction and estimation.Les auteurs proposent et testent de façon empirique un modèle prévisionnel de rentabilité transversal comportant deux améliorations importantes par rapport aux modèles existants. En premier lieu, au chapitre de la structure du modèle, les auteurs incorporent la régression à la moyenne en utilisant un modèle d'ajustement partiel à deux paliers et plusieurs déterminants pertinents supplémentaires de la rentabilité. En second lieu, au chapitre de l'estimation du modèle, les auteurs, plutôt que d'appliquer la méthode classique des moindres carrés, ont recours à l'analyse du moindre écart absolu parce qu'elle permet de mieux traiter les valeurs extrêmes. Ils constatent que les prévisions produites par leur modèle sont plus exactes que celles de trois modèles existants, et cela pour tous les horizons prévisionnels du plan de recherche, et qu'elles sont également plus exactes que les prévisions consensuelles des analystes, pour les horizons prévisionnels de deux à cinq ans. Une analyse plus poussée indique que l'estimation du moindre écart absolu procure l'amélioration marginale la plus importante de l'exactitude, suivie de l'inclusion des sous†éléments du revenu à titre de variables indépendantes et de l'emploi du modèle d'ajustement partiel à deux paliers. Pour ce qui est de la pertinence économique, les auteurs observent que les prévisions produites par leur modèle sont plus révélatrices des rendements futurs que celles que fournissent les autres modèles, que les prévisions des analystes et que les facteurs de risque standard. Dans l'ensemble, l'importance des résultats de l’étude tient au fait qu'ils corroborent l'exactitude et la pertinence économique supérieures d'un modèle prévisionnel de rentabilité transversal comportant des améliorations par rapport aux modèles existants, au chapitre de la structure et de l'estimation du modèle.
Suggested Citation
Mark E. Evans & Kenneth Njoroge & Kevin Ow Yong, 2017.
"An Examination of the Statistical Significance and Economic Relevance of Profitability and Earnings Forecasts from Models and Analysts,"
Contemporary Accounting Research, John Wiley & Sons, vol. 34(3), pages 1453-1488, September.
Handle:
RePEc:wly:coacre:v:34:y:2017:i:3:p:1453-1488
DOI: 10.1111/1911-3846.12307
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Harris, Richard D.F. & Wang, Pengguo, 2019.
"Model-based earnings forecasts vs. financial analysts' earnings forecasts,"
The British Accounting Review, Elsevier, vol. 51(4), pages 424-437.
- Kapons, Martin, 2021.
"Essays on capital markets research in accounting,"
Other publications TiSEM
800d189b-8628-448a-9d6f-5, Tilburg University, School of Economics and Management.
- Ehsan Khansalar & Eilnaz Kashefi-Pour, 2020.
"The usefulness of the double entry constraint for predicting earnings,"
Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 51-67, January.
- Mundt, Philipp & Alfarano, Simone & Milaković, Mishael, 2020.
"Exploiting ergodicity in forecasts of corporate profitability,"
Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
- Esplin, Adam, 2022.
"Industry-level versus firm-level forecasts of long-term earnings growth,"
Finance Research Letters, Elsevier, vol. 47(PA).
- Alexander P. Paton & Damien Cannavan & Stephen Gray & Khoa Hoang, 2020.
"Analyst versus model‐based earnings forecasts: implied cost of capital applications,"
Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 4061-4092, December.
- Hui Tian & Andrew Yim & David P. Newton, 2021.
"Tail-Heaviness, Asymmetry, and Profitability Forecasting by Quantile Regression,"
Management Science, INFORMS, vol. 67(8), pages 5209-5233, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:34:y:2017:i:3:p:1453-1488. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.