IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v35y2019i5p1202-1227.html
   My bibliography  Save this article

Multifactor Heston's stochastic volatility model for European option pricing

Author

Listed:
  • Sotheara Veng
  • Ji‐Hun Yoon
  • Sun‐Yong Choi

Abstract

In this study, we extend the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254] by incorporating a slow varying factor of volatility. The resulting model can be viewed as a multifactor extension of the Heston model with two additional factors driving the volatility levels. An asymptotic analysis consisting of singular and regular perturbation expansions is developed to obtain an approximation to European option prices. We also find explicit expressions for some essential functions that are available only in integral formulas in the work of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254]. This finding basically leads to considerable reduction in computational time for numerical calculation as well as calibration problems. An accuracy result of the asymptotic approximation is also provided. For numerical illustration, the multifactor Heston model is calibrated to index options on the market, and we find that the resulting implied volatility surfaces fit the market data better than those produced by the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254], particularly for long‐maturity call options.

Suggested Citation

  • Sotheara Veng & Ji‐Hun Yoon & Sun‐Yong Choi, 2019. "Multifactor Heston's stochastic volatility model for European option pricing," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(5), pages 1202-1227, September.
  • Handle: RePEc:wly:apsmbi:v:35:y:2019:i:5:p:1202-1227
    DOI: 10.1002/asmb.2462
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2462
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Recchioni, Maria Cristina & Iori, Giulia & Tedeschi, Gabriele & Ouellette, Michelle S., 2021. "The complete Gaussian kernel in the multi-factor Heston model: Option pricing and implied volatility applications," European Journal of Operational Research, Elsevier, vol. 293(1), pages 336-360.
    2. Deng, Guohe, 2020. "Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:35:y:2019:i:5:p:1202-1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.