IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v35y2019i3p717-731.html
   My bibliography  Save this article

Bayesian l0‐regularized least squares

Author

Listed:
  • Nicholas G. Polson
  • Lei Sun

Abstract

Bayesian l0‐regularized least squares is a variable selection technique for high‐dimensional predictors. The challenge is optimizing a nonconvex objective function via search over model space consisting of all possible predictor combinations. Spike‐and‐slab (aka Bernoulli‐Gaussian) priors are the gold standard for Bayesian variable selection, with a caveat of computational speed and scalability. Single best replacement (SBR) provides a fast scalable alternative. We provide a link between Bayesian regularization and proximal updating, which provides an equivalence between finding a posterior mode and a posterior mean with a different regularization prior. This allows us to use SBR to find the spike‐and‐slab estimator. To illustrate our methodology, we provide simulation evidence and a real data example on the statistical properties and computational efficiency of SBR versus direct posterior sampling using spike‐and‐slab priors. Finally, we conclude with directions for future research.

Suggested Citation

  • Nicholas G. Polson & Lei Sun, 2019. "Bayesian l0‐regularized least squares," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 717-731, May.
  • Handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:717-731
    DOI: 10.1002/asmb.2381
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2381
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:717-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.