IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v35y2019i3p414-430.html
   My bibliography  Save this article

V@R representation theorems in ambiguous frameworks

Author

Listed:
  • Alejandro Balbás
  • Jean‐Philippe Charron

Abstract

The value at risk (V@R) is a very important risk measure with significant applications in finance (risk management, pricing, hedging, portfolio theory, etc), insurance (premium principles, optimal reinsurance, etc), production, marketing (newsvendor problem), etc. It also plays a critical role in regulation about risk (Basel, Solvency, etc), it is very appreciated by practitioners due to its intuitive interpretation, and it is the unique popular risk measure remaining finite for heavy tailed risks with unbounded expectation. Besides, ambiguous frameworks are becoming more and more usual in applications of risk analysis. Lack of data or committed errors may provoke discrepancies between real probabilities and estimated ones. This paper combines both V@R and ambiguous settings, and a new representation theorem for V@R is given. Consequently, inspired by previous studies dealing with coherent risk measures and their representation, we will give new methods to compute and optimize V@R under ambiguity. This seems to be a relevant finding because the analytical properties of V@R are very weak if one compares with a coherent risk measure. Indeed, V@R is neither continuous nor convex, which makes it very complicated to deal with it in mathematical approaches. Nevertheless, the results of this paper will allow us to transform computation and optimization problems involving V@R into continuous and differentiable problems.

Suggested Citation

  • Alejandro Balbás & Jean‐Philippe Charron, 2019. "V@R representation theorems in ambiguous frameworks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 414-430, May.
  • Handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:414-430
    DOI: 10.1002/asmb.2425
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2425
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:414-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.