IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v35y2019i2p283-298.html
   My bibliography  Save this article

Weak signals in high‐dimensional regression: Detection, estimation and prediction

Author

Listed:
  • Yanming Li
  • Hyokyoung G. Hong
  • S. Ejaz Ahmed
  • Yi Li

Abstract

Regularization methods, including Lasso, group Lasso, and SCAD, typically focus on selecting variables with strong effects while ignoring weak signals. This may result in biased prediction, especially when weak signals outnumber strong signals. This paper aims to incorporate weak signals in variable selection, estimation, and prediction. We propose a two‐stage procedure, consisting of variable selection and postselection estimation. The variable selection stage involves a covariance‐insured screening for detecting weak signals, whereas the postselection estimation stage involves a shrinkage estimator for jointly estimating strong and weak signals selected from the first stage. We term the proposed method as the covariance‐insured screening‐based postselection shrinkage estimator. We establish asymptotic properties for the proposed method and show, via simulations, that incorporating weak signals can improve estimation and prediction performance. We apply the proposed method to predict the annual gross domestic product rates based on various socioeconomic indicators for 82 countries.

Suggested Citation

  • Yanming Li & Hyokyoung G. Hong & S. Ejaz Ahmed & Yi Li, 2019. "Weak signals in high‐dimensional regression: Detection, estimation and prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(2), pages 283-298, March.
  • Handle: RePEc:wly:apsmbi:v:35:y:2019:i:2:p:283-298
    DOI: 10.1002/asmb.2340
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2340
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yu & Zhuang, Xiaoyang, 2023. "Shrinkage estimation of semi-parametric spatial autoregressive panel data model with fixed effects," Statistics & Probability Letters, Elsevier, vol. 194(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:35:y:2019:i:2:p:283-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.