IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v34y2018i3p293-304.html
   My bibliography  Save this article

Risk assessment of failure of rock bolts in underground coal mines using support vector machines

Author

Listed:
  • Peng Jiang
  • Peter Craig
  • Alan Crosky
  • Mojtaba Maghrebi
  • Ismet Canbulat
  • Serkan Saydam

Abstract

In recent years, there has been an increasing incidence of failure of rock bolts due to stress corrosion cracking and localized corrosion attack in Australian underground coal mines. Unfortunately, prediction of the risk of failure from results obtained from laboratory testing is not necessarily reliable because it is difficult to properly simulate the mine environment. An alternative way of predicting failure is to apply machine learning methods to data obtained from underground mines. In this paper, support vector machines are built to predict failure of bolts in complex mine environments. Feature transformation and feature selection methods are applied to extract useful information from the original data. A dataset, which had continuous features and spatial data, was used to test the proposed model. The results showed that principal component analysis‐based feature transformation provides reliable risk prediction.

Suggested Citation

  • Peng Jiang & Peter Craig & Alan Crosky & Mojtaba Maghrebi & Ismet Canbulat & Serkan Saydam, 2018. "Risk assessment of failure of rock bolts in underground coal mines using support vector machines," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(3), pages 293-304, May.
  • Handle: RePEc:wly:apsmbi:v:34:y:2018:i:3:p:293-304
    DOI: 10.1002/asmb.2273
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2273
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bemah Ibrahim & Isaac Ahenkorah & Anthony Ewusi, 2022. "Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:34:y:2018:i:3:p:293-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.