IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i6p559-574.html
   My bibliography  Save this article

Some closed form robust moment‐based estimators for the MEM(1,1)

Author

Listed:
  • Wanbo Lu
  • Rui Ke

Abstract

In this paper, we extend the closed form moment estimator (ordinary MCFE) for the autoregressive conditional duration model given by Lu et al (2016) and propose some closed form robust moment‐based estimators for the multiplicative error model to deal with the additive and innovational outliers. The robustification of the closed form estimator is done by replacing the sample mean and sample autocorrelation with some robust estimators. These estimators are more robust than the quasi‐maximum likelihood estimator (QMLE) often used to estimate this model, and they are easy to implement and do not require the use of any numerical optimization procedure and the choice of initial value. The performance of our proposal in estimating the parameters and forecasting conditional mean μt of the MEM(1,1) process is compared with the proposals existing in the literature via Monte Carlo experiments, and the results of these experiments show that our proposal outperforms the ordinary MCFE, QMLE, and least absolute deviation estimator in the presence of outliers in general. Finally, we fit the price durations of IBM stock with the robust closed form estimators and the benchmarks and analyze their performances in estimating model parameters and forecasting the irregularly spaced intraday Value at Risk.

Suggested Citation

  • Wanbo Lu & Rui Ke, 2017. "Some closed form robust moment‐based estimators for the MEM(1,1)," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(6), pages 559-574, November.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:6:p:559-574
    DOI: 10.1002/asmb.2259
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2259
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:6:p:559-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.