IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i5p476-493.html
   My bibliography  Save this article

Optimization model to start harvesting in stochastic aquaculture system

Author

Listed:
  • Hidekazu Yoshioka
  • Yuta Yaegashi

Abstract

Establishment of cost‐effective management strategy of aquaculture is one of the most important issues in fishery science, which can be addressed with bio‐economic mathematical modeling. This paper deals with the aforementioned issue using a stochastic process model for aquacultured non‐renewable fishery resources from the viewpoint of an optimal stopping (timing) problem. The goal of operating the model is to find the optimal criteria to start harvesting the resources under stochastic environment, which turns out to be determined from the Bellman equation (BE). The BE has a separation of variables type structure and can be simplified to a reduced BE with a fewer degrees of freedom. Dependence of solutions to the original and reduced BEs on parameters and independent variables is analyzed from both analytical and numerical standpoints. Implications of the analysis results to management of aquaculture systems are presented as well. Numerical simulation focusing on aquacultured Plecoglossus altivelis in Japan validates the mathematical analysis results. Copyright © 2017 John Wiley & Sons, Ltd.

Suggested Citation

  • Hidekazu Yoshioka & Yuta Yaegashi, 2017. "Optimization model to start harvesting in stochastic aquaculture system," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(5), pages 476-493, September.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:5:p:476-493
    DOI: 10.1002/asmb.2250
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2250
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshioka, Hidekazu & Yaegashi, Yuta, 2019. "A finite difference scheme for variational inequalities arising in stochastic control problems with several singular control variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 40-66.
    2. Hidekazu Yoshioka, 2023. "Optimal Aquaculture Planning While Accounting for the Size Spectrum," SN Operations Research Forum, Springer, vol. 4(3), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:5:p:476-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.